首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   36篇
  国内免费   6篇
化学   754篇
晶体学   17篇
力学   18篇
数学   33篇
物理学   223篇
  2023年   6篇
  2022年   3篇
  2021年   28篇
  2020年   21篇
  2019年   22篇
  2018年   9篇
  2017年   23篇
  2016年   17篇
  2015年   26篇
  2014年   28篇
  2013年   55篇
  2012年   82篇
  2011年   77篇
  2010年   39篇
  2009年   41篇
  2008年   64篇
  2007年   66篇
  2006年   80篇
  2005年   72篇
  2004年   53篇
  2003年   61篇
  2002年   44篇
  2001年   27篇
  2000年   15篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   1篇
  1994年   7篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1045条查询结果,搜索用时 671 毫秒
41.
A spin probe TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy) was dissolved in a tetraethyl orthosilicate sol-gel reaction system and measured by electron spin resonance spectroscopy at 295 K. The nitrogen hyperfine coupling constant was from 1.64–1.66 mT in the sol-gel solutions. The values were sensitive to the ethanol-to-water ratio of the solutions. The hyperfine coupling constant in the xerogels was 1.70 mT, which was almost the same as that in water, indicating that the probe molecules were trapped in silica pores with water adsorbed on the silica surfaces. The motion of TEMPOL in the xerogels was considerably slower than in the sol-gel solutions. The local viscosity estimated was from 70–90 cP. The ESR spectra of TEMPOL were altered during the sol-gel process, indicating that adsorbed water on the silicas surfaces has an important role for trapping organic molecules in sol-gel glasses.  相似文献   
42.
Yun H  Ryu G  Lee S  Hoffmann R 《Inorganic chemistry》2003,42(7):2253-2260
The new low-dimensional ternary chalcogenide, Nb(1+x)V(1-x)S(5) (x = 0.18), has been prepared and characterized. This compound crystallizes in the monoclinic space group, C2(2h)-P2(1)/m with two formula units in a cell with dimensions a = 9.881(4) A, b = 3.329(1) A, c = 8.775(3) A, and beta = 114.82(3) degrees. The layer is composed of two unique chains of face-sharing Nb-centered bicapped trigonal prisms and edge-sharing M-centered octahedra (M = Nb or V). The electronic structures of the monomeric basic building units, NbS(8) and VS(6), and hypothetical and real one-, two-, and three-dimensional structures making up the compound are examined to understand the nature of inter- and intrachain interactions and orbital overlapping among metals and sulfur atoms. The electronic structure of Nb(1+x)V(1-x)S(5) is essentially given by superimposing those of the individual chains. V d orbitals are found to be crucial for the one-dimensional metallic conductivity along the chain axis.  相似文献   
43.
Although known since the 1950s, free-radical carbonylation has not received much attention until only recently. In the last few years the application of modern free-radical techniques has revealed the high synthetic potential of this reaction as a tool for introducing CO into organic molecules. Clearly now is the time for a renaissance of this chemistry. Under standard conditions (tributyltin hydride/CO) primary, secondary, as well as tertiary alkyl bromides and iodides can be efficiently converted into the corresponding aldehydes. Aromatic and α,β-unsaturated aldehydes can also be prepared from the parent aromatic and vinylic iodides. If the reaction is carried out in the presence of alkenes containing an electron-withdrawing substituent, the initially formed acyl radical subsequently adds to the alkene, leading to a general method for the synthesis of unsymmetrical ketones. This three-component coupling reaction can be extended successfully to allyltin-mediated reactions. Thus, β,γ-enones can be prepared from organic halides, CO, and allyltributylstannanes. In a remarkable one-pot procedure alkyl halides can be treated with a mixture of alkene, allyltributylstannane, and carbon monoxide in a four-component coupling reaction that provides β-functionalized δ,?-unsaturated ketones by the formation of three new C? C bonds. The reaction of 4-pentenyl radicals with CO leads to acyl radical cyclization, which provides a useful method for the synthesis of cyclopentanones. Certain useful one-electron oxidations can be combined efficiently with free-radical carbonylations. These findings and others discussed in this article clearly demonstrate that free-radical carbonylation can now be considered a practical alternative to transition metal mediated carbonylation.  相似文献   
44.
[reaction: see text] Ab initio calculations using 6-311G**, cc-pVDZ, aug-cc-pVDZ, and a (valence) double-zeta pseudopotential (DZP) basis set, with (QCISD, CCSD(T)) and without (UHF) the inclusion of electron correlation, and density functional methods (BHandHLYP, B3LYP) predict that alpha,beta-unsaturated acyl radicals and alpha-ketenyl radicals exist as isomers. At the CCSD(T)/cc-pVDZ//BHandHLY/cc-pVDZ level of theory, energy barriers of 15.1 and 17.7-21.7 kJ mol(-)(1) are calculated for the isomerization of s-trans-propenoyl and s-trans-crotonoyl radical to ketenylmethyl and 1-ketenylethyl radical, respectively. Similar results are obtained for the reactions of s-trans isomers involving silyl, germyl, and stannyl groups with energy barriers (DeltaE++) of 12.2-12.4, 13.1-13.9, and 12.9-18.2 kJ mol(-)(1) at the CCSD(T)/DZP//BHandHLYP/DZP calculation, respectively. These results suggest that alpha,beta-unsaturated acyl radicals and alpha-ketenyl radicals are not canonical forms but are isomeric species that can rapidly interconvert.  相似文献   
45.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   
46.
Journal of Sol-Gel Science and Technology - Although sol–gel silica nanoparticles are widely used in academic and industrial applications, only a few studies have focused on amine catalysts...  相似文献   
47.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
48.
Ye  Linglong  Li  Xueshan  Cai  Yunhao  Ryu  Hwa Sook  Lu  Guangkai  Wei  Donghui  Sun  Xiaobo  Woo  Han Young  Tan  Songting  Sun  Yanming 《中国科学:化学(英文版)》2020,63(4):483-489
Benzo[1,2-b:4,5-b′]dithiophene(BDT) has been widely used to construct donor-acceptor(D-A) copolymers in organic solar cells(OSCs). However, benzo[1,2-b:4,5-b′]difuran(BDF), an analogue of BDT, has received less attention than BDT. The photovoltaic performance of BDF copolymers has lagged behind that of BDT copolymers. Here, we designed and synthesized two BDF copolymers, PBF1-C and PBF1-C-2Cl. PBF1-C-2Cl, which is composed of BDF and benzo[1,2-c:4,5-c′]dithiophene-4,8-dione connected by a chlorinated thiophene π-bridge, displays a low-lying highest occupied molecular orbital energy level,which helps in yielding a high open-circuit voltage(V_(oc)) in OSCs. As a result, when blended with Y6, PBF1-C-2Cl-based devices showed a high V_(oc) of 0.83 V and a power conversion efficiency(PCE) of 13.10%. To the best of our knowledge, the PCE of 13.10% is among the highest efficiency values for OSCs based on BDF copolymers.  相似文献   
49.
Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB‐WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional 1H NMR and BB‐WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
50.
Stacked organic light-emitting diodes (SOLEDs) with 30-nm nanoparticle (NP) interfacial layers were investigated. Zinc oxide (ZnO) was used as an interfacial layer between two green polymer (GP) layers. SOLEDs with NP interfacial layers had higher device efficiency than did a single-unit device due to the high probability of exciton recombination that originated from the Auger electron-assisted energy up-conversion process. Although the current density and luminance of SOLEDs with ZnO NP interfacial layers were smaller than those of the reference device, the efficiency was doubled because of the big band alignment difference and the large band gap between GP and ZnO NP interfacial layers, which induced more radiative-exciton recombination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号